This Digital Twins program is the leading online training, already taken by thousands of professionals worldwide, has become the reference in nanotechnology education and certification in the industry.
Digital twins are virtual replicas of physical devices that data scientists and IT pros can use to run simulations before actual devices are built and deployed. They are also changing how technologies such as IoT, AI and analytics are optimized.
What is a digital twin?
A digital twin is a digital representation of a physical object or system. The technology behind digital twins has expanded to include large items such as buildings, factories and even cities, and some have said people and processes can have digital twins, expanding the concept even further. The idea first arose at NASA: full-scale mockups of early space capsules, used on the ground to mirror and diagnose problems in orbit, eventually gave way to fully digital simulations.
But the term really took off after Gartner named digital twins as one of its top 10 strategic trends for 2020 saying that within three to five years, “billions of things will be represented by digital twins, a dynamic software model of a physical thing or system”. A year later, Gartner once again named digital twins as a top trend, saying that “with an estimated 21 billion connected sensors and endpoints by 2020, digital twins will exist for billions of things in the near future.”
In essence, a digital twin is a computer program that takes real-world data about a physical object or system as inputs and produces as outputs predications or simulations of how that physical object or system will be affected by those inputs.
How does a digital twin work?
A digital twin begins its life being built by specialists, often experts in data science or applied mathematics. These developers research the physics that underlie the physical object or system being mimicked and use that data to develop a mathematical model that simulates the real-world original in digital space.
The twin is constructed so that it can receive input from sensors gathering data from a real-world counterpart. This allows the twin to simulate the physical object in real time, in the process offering insights into performance and potential problems. The twin could also be designed based on a prototype of its physical counterpart, in which case the twin can provide feedback as the product is refined; a twin could even serve as a prototype itself before any physical version is built.
The process is outlined in some detail in this post from Eniram, a company that creates digital twins of the massive container ships that carry much of world commerce – an extremely complex kind of digital twin application. However, a digital twin can be as complicated or as simple as you like, and the amount of data you use to build and update it will determine how precisely you’re simulating a physical object. For instance, this tutorial outlines how to build a simple digital twin of a car, taking just a few input variables to compute mileage
If you are looking for a career at the cutting edge of Digital Twins you can start learning for FREE Now! Click the button below: